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SUMMARY Many bacterial pathogens can permanently colonize their host and es-
tablish either chronic or recurrent infections that the immune system and antimicro-
bial therapies fail to eradicate. Antibiotic persisters (persister cells) are believed to be
among the factors that make these infections challenging. Persisters are subpopula-
tions of bacteria which survive treatment with bactericidal antibiotics in otherwise
antibiotic-sensitive cultures and were extensively studied in a hope to discover the
mechanisms that cause treatment failures in chronically infected patients; however,
most of these studies were conducted in the test tube. Research into antibiotic per-
sistence has uncovered large intrapopulation heterogeneity of bacterial growth and
regrowth but has not identified essential, dedicated molecular mechanisms of antibi-
otic persistence. Diverse factors and stresses that inhibit bacterial growth reduce kill-
ing of the bulk population and may also increase the persister subpopulation, imply-
ing that an array of mechanisms are present. Hopefully, further studies under
conditions that simulate the key aspects of persistent infections will lead to identify-
ing target mechanisms for effective therapeutic solutions.

KEYWORDS antibiotic resistance, antimicrobial agents, persistence

INTRODUCTION

The term “persisters” (persister cells) is used to refer to individual bacteria that
survive antibiotic treatment, which otherwise kills the large majority of their kin

population (1, 2). Treatment with bactericidal antibiotics very rarely kills 100% of the
bacterial cells, and persisters are common in different microbial populations and
communities. Strictly speaking, this term designates the minor subpopulation of bac-
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teria that are transiently tolerant to the lethal activity of antimicrobials in a test tube.
In the host, bacteria (both persisters and nonpersisters) can evade effective treatment
by multiple factors relating to patient and drug (3). Here, we provide an overview of
persister research to those readers who find that papers on the topic can be confusing
and contradictory. We emphasize essential research that is consensually accepted,
while communicating also the conflicting data.

Many fundamental observations and ideas about persisters originate from very early
papers and are still generally valid. Therefore, we built the story around a few seminal
papers and focus on two interwoven topics: (i) the different growth behavior of
individual bacteria in an isogenic population and (ii) the molecular mechanisms of
persistence.

DEFINING ANTIBIOTIC RESISTANCE, TOLERANCE, AND PERSISTENCE

To understand persistence, it is crucial to distinguish the two modes of antibiotic
action. Both bacteriostatic and bactericidal antibiotics stop growth of sensitive bacterial
populations as a direct result of binding to the target (4). However, bactericidal
antibiotics kill bacteria by inducing toxic malfunctioning (corruption [5]) of the targeted
process (6, 7). The bacterial ability to resist growth inhibition is referred to as “antibiotic
resistance,” while the ability of a bacterial population to survive the duration of an
antibiotic treatment is dubbed “antibiotic tolerance” (see the glossary in the Appendix).
Importantly, while antibiotic tolerance describes slow killing (reduced killing rate) of the
bulk bacterial population (1), “persistence” and “heteroresistance” refer to a small
fraction of the population that is either tolerant (persisters) or resistant to antibiotics,
respectively (8).

Antibiotic tolerance inversely correlates with bacterial growth rate (9–12) and can be
mechanistically explained by low activity of the target and/or downstream processes
which diminish the corruption by the antibiotic. Antibiotic tolerance is either genotypic
or phenotypic (12). Genotypic tolerance characterizes bacterial isolates or mutants that,
under similar conditions, are killed at a reduced rate in comparison to the standard- or
wild-type strains (12, 13). Just like resistant mutants are selected during antibacterial
therapy, antibiotic treatment can select for the mutants that show increased tolerance
to killing by the drug (13). Often, these mutants display a growth defect compared to
the parental strain. Phenotypic tolerance occurs in response to an environmental
trigger, primarily in circumstances of slow growth and in nongrowing conditions. For
example, the nongrowing bacteria of a starved culture survive treatment with
�-lactams and glycopeptides, which are able to effectively kill the isogenic strain during
normal growth conditions (14). These groups of antibiotics inhibit the cell wall synthe-
sis—a process that is required for growth but is relatively inactive in the nongrowing
cells (Table 1).

Antibiotic resistance and tolerance levels often vary between individual cells or
subpopulations and those of the bulk population. Bacteria exhibit phenotypic hetero-
geneity: even in the same environment, they can be phenotypically diverse and show
differences in gene expression, shape, and metabolism (15–18). Differences in growth
rate of individual bacteria in a clonal population have a strong effect on antibiotic
susceptibility (19–23). An extreme example of such heterogeneity is the formation of
endospores in sporulating bacterial species. These nonreplicating survival forms endure
harsh environmental stresses, including antibiotics (24). In a similar way, populations of
nonsporulating microbes contain slowly growing and nongrowing cells that show
increased tolerance to antibiotics.

ESSENTIALS OF PERSISTER CELLS

Persisters are an extremely antibiotic-tolerant subpopulation of bacterial cells. Many
single-cell observations have demonstrated that these cells are in a transiently non-
growing state (19–21, 25). While the nongrowing state of persisters explains their
extreme tolerance to antibiotics, the growth arrest alone does not explain their
tolerance to agents that act on pathways unrelated to growth, such as fluoroquinolones
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and aminoglycosides (26). Usually— but not always—persisters have entered a non-
growing state already before the antibiotic treatment starts (1). It is important to note
that persisters are not resistant, as they cannot proliferate in the presence of the
antibiotic (Fig. 1 and 2; see the glossary in the Appendix). Persistence is not heritable;
persister cells are phenotypic bacterial variants that are genetically identical to the
sensitive bacteria. Therefore, their progeny is sensitive to killing by antibiotics and
contains a small fraction of persisters as all other bacterial populations do (27, 28).

Persistent forms of bacterial pathogens are believed to be important contributors
toward the failure of antimicrobial therapy of prolonged and recurrent infections (3),
such as biofilm formation in vivo (29, 30), tuberculosis (31), urinary tract infections (32),
and lung infections in cystic fibrosis patients (33). Antibiotic tolerance also facilitates
the evolution and spread of resistance (13, 34–38). Despite that, the actual significance
of persisters in an infection has remained elusive: their role in the causation and
recalcitrance of diseases is hard to estimate. Therefore, in this review, we leave
infections aside and focus on in vitro studies that were conducted to identify the
molecular mechanisms of persistence. For this purpose, persisters have been studied
extensively in Escherichia coli K-12 laboratory strains. This model organism enabled
simple cultivation, genetic manipulation, and use of the following single-cell techniques:
fluorescent reporters, microfluidics, and live imaging microscopy (19, 20, 39–41). Ambig-

TABLE 1 The targets and modes of action of the main classes of bactericidal antibiotics

Bactericidal antibiotics Targets and modes of action

�-Lactams Disrupt cell wall synthesis: penicillins, cephalosporins, monobactams, and carbapenems. Bind covalently to the enzymes
that synthesize and reorganize the bacterial cell wall: peptidoglycan synthetases and hydrolases (penicillin binding
proteins [PBPs]). Induce bacterial lysis and abnormal cell shape (234).

Quinolones Clinically important drugs are fluoroquinolones, e.g., ciprofloxacin, levofloxacin, ofloxacin, and gatifloxacin. Bind to the
complexes of type II topoisomerases and DNA at the stage where both cleaved DNA strands are covalently attached
to the topoisomerase subunits. Induce DNA brakes, SOS response, and mutagenesis in targeted bacteria (230).

Aminoglycosides Target protein synthesis, bind to the decoding center of the small (30S) ribosomal subunit. Bactericidal action is caused
by erroneous translation, particularly mistranslation of membrane protein leading to membrane damage (6, 231,
232).

Peptide antibiotics Nonribosomally synthesized peptides: glycopeptides (e.g., vancomycin), polymyxins (e.g., colistin), gramicidins, and
bacitracins. Target cell wall synthesis and cell membranes; clinical use is restricted due to their toxicity and a narrow
spectrum of action (233).

Other classes Diverse mechanisms of action: macrolides (e.g., erythromycin), chloramphenicol, and rifampin are bactericidal against
some bacterial phyla/strains and bacteriostatic against others. The antituberculosis (pro)drug isoniazid is bactericidal
against fast-growing and bacteriostatic against slow-growing mycobacteria. When activated by KatG, it inhibits
synthesis of mycolic acids and the mycobacterial cell wall. An antituberculosis drug, bedaquiline of the
diarylquinoline class, blocks the mycobacterial ATP synthesis.

FIG 1 The nongrowing state of persisters was discovered using time-lapse microscopy. (A and B) The
patterns of bacterial fate that occur in typical batch cultures during growth, antibiotic treatment, and
evaluation of survival by plating (A) were observed under the microscope by tracking division and lysis
of individual bacteria (19) (B). E. coli was grown in a microfluidics device, treated with a �-lactam
antibiotic, and thereafter, allowed to regrow in the drug-free medium. The growing, antibiotic-sensitive
bacteria are yellow; the nongrowing bacteria are brown. The red repression arrow marks the stress signal
(starvation) that triggers the growth arrest, the green arrows mark resuscitation, and the black crosses
mark killing by antibiotics.
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uous and often contradictory results of these studies imply that multiple processes
contribute to persister formation and resuscitation. Some researchers hypothesize that
persistence occurs as an inadvertent result of various errors and glitches, which happen
randomly, temporarily obstructing proliferation of some bacteria (42, 43). Others con-
tinue a quest to search for dedicated mechanisms that underlie the observable ambi-
guity (44–47) and might inspire better antibacterial therapy. In reality, it is likely that
both scenarios contribute toward persister cell formation.

THE DISCOVERY OF PERSISTERS

The pioneering studies of penicillin (�-lactam; Table 1) showed the antibiotic to be
bactericidal (48, 49). In 1944, Joseph Bigger found that a small fraction of bacteria
survived and regrew after the penicillin treatment of cultured staphylococci (28). He
called these surviving cells “persisters” and demonstrated that, unlike resistant mutants,
they produce drug-sensitive progeny.

Bigger has put forward two important hypotheses.
First, he observed that penicillin was only partially effective against staphylococcal

osteomyelitis, and the disease recurred after the secession of treatment. Drug-sensitive,
causative bacteria were subsequently isolated from the treated patients. Bigger then
suggested that persistence is not merely a laboratory artifact, but a reason for antimi-
crobial treatment failure. Therefore, if clinically relevant, persisters in patients may be
similar to those that occur in a test tube, and understanding the mechanisms of

FIG 2 Persisters are transiently growth-arrested and regrow after antibiotic treatment. Upon depletion of
nutrients, the (pre)culture enters the stationary phase. Bacteria stop growing (red bar; A) and acquire
antibiotic tolerance (gray background). Upon inoculation into fresh growth medium, the bacteria
resuscitate (green arrow; B), become sensitive to antibiotics (yellow background), and are killed during
bactericidal treatment (black cross). A fraction of the inoculated bacteria (triggered persisters) maintain
the nongrowing state they acquired during starvation in the preculture, despite the fresh supply of
nutrients (C). Spontaneous persisters become growth-arrested during exponential growth (D). Persisters
survive antibacterial treatment and resuscitate afterward (E), forming colonies. A fraction of the non-
growing cells maintain membrane integrity and metabolic activity but resuscitate too late to form visible
colonies (F) or stay growth-arrested (G) (23, 25). The bottom panel shows the growth and killing curves
of the antibiotic-treated cultures. In growing cultures, killing of proliferating bacteria forms the slope of
the bi-phasic killing curve, and persisters form the plateau stage, which with hip mutants, is considerably
higher than in the wild type (101). The nongrowing (stationary-phase) cultures and biofilms survive
bactericidal drug treatments much better than the growing cultures (90).
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persistence in culture would lead to effective therapy of hard-to-treat infections. This
hypothesis has driven persister studies since that time.

Second, Bigger noticed that growth-inhibited and slow-growing cultures are cleared
inefficiently. He hypothesized that penicillin kills only dividing bacteria and that per-
sister cells are in a nonreplicating phase. Technical limitations at this time meant that
he had no means to observe the proliferation and killing of individual bacteria, and the
nonproliferation of persisters was only a hypothesis (1). Numerous researchers went on
to support this hypothesis experimentally using advanced techniques, and nonprolif-
eration became recognized as a fundamental characteristic of persister cells (19–21, 25,
39, 50).

THE TRANSIENT NONGROWING STATE OF PERSISTERS

Nathalie Balaban and her colleagues from the Stanislas Leibler lab made persisters
visible and established that they are truly nonproliferating (19). In their work, they used
E. coli high-persistence (hip) mutants (we will discuss these mutants further later in the
text), grew them in a microfluidic device, and tracked individual cells using time-lapse
microscopy. A small number of nongrowing cells were observed among the growing
hipA7 mutant culture. Upon treatment with ampicillin (�-lactam; Table 1), the replicat-
ing cells were lysed, while the few nongrowers were not. After the removal of
ampicillin, some (but not all) of these nongrowing cells started to proliferate in the
drug-free medium and were identified as persisters.

The hipA7 persisters detected in this experiment were growth-arrested starting from
their inoculation into the microfluidics chamber. Their nongrowing state was retained
from the stationary-phase seed culture and was not drug-induced (Fig. 1). The authors
categorized such “preexisting” persistence as type I (19), which was recently changed
to “triggered persistence,” emphasizing that it is induced by stress, e.g., starvation in
the stationary phase (1). In other words, Balaban and colleagues demonstrated that
individual bacteria have different durations of the lag phase. Persisters “get stuck” in
the nongrowing state, survive the antibiotic treatment, and later spontaneously switch
to the growth phenotype (Fig. 1). Heterogeneous exit of individual bacteria from the
lag phase happens also on agar plates and can be monitored using an automated
colony appearance assay (51, 52). Flow cytometry enabled tracking of both the dividing
and the nongrowing bacteria in liquid cultures, using dilution of presynthesized
fluorescent protein (21, 25). This method demonstrated that growing cultures contain
large fractions of nongrowing cells that are alive but unable to regrow (Fig. 2). The
number of these cells can exceed the number of colony-forming persisters by orders of
magnitude (53, 54), illustrating that persisters cannot be equated with nongrowing
cells, which may have maintained their membrane integrity and metabolic activity but
irreversibly lost their capacity to resume growth when plated.

PERSISTENCE AND HETERORESISTANCE

In the same seminal microfluidics study, Balaban and colleagues (19) also used
another E. coli hip mutant: the hipQ strain. The strain is poorly characterized; the
mutated genes and molecular mechanism conferring the phenotype are unknown (55).
In this strain, the surviving cells were not completely growth-arrested but grew and
divided continuously at a rate about 10 times lower than the sensitive cells, even at a
high antibiotic concentration. According to the present terminology, the hipQ strain
might be called heteroresistant (see the glossary in the Appendix). However, it must be
noted that bacterial elongation in the presence of the antibiotic is not enough to prove
resistance. Cells often elongate in response to drugs such as fluoroquinolones and
subsequently die. Thus, at this point, it is still unclear if the hipQ subpopulation survive
because of their slowed growth or unknown resistance factors.

Heteroresistance is caused by heterogeneous expression of resistance factors and is
often related to transient amplification of parts of the bacterial chromosome (56).
Similar to persistence, it is widespread in different bacterial phyla and may potentially
cause treatment failure, though its clinical relevance has been debated (57). For

Antimicrobial Persisters Microbiology and Molecular Biology Reviews

December 2020 Volume 84 Issue 4 e00070-20 mmbr.asm.org 5

https://mmbr.asm.org


example, vancomycin heteroresistance in Staphylococcus aureus has spread among
hospitalized patients and can develop into hereditary vancomycin resistance upon
exposure to the drug (58). According to one study, it was associated with a treatment
failure in a patient with endocarditis and in the rabbit model of endocarditis (59), while
another study found no effect of heteroresistance on the outcome of the treatment of
bacteremia (60). Beyond S. aureus, heteroresistance to the last-line polymyxin antibiotic
colistin was identified in a clinical isolate of the nosocomial pathogen Enterobacter
cloacae (61). While colistin effectively rescued the mice infected with a susceptible
strain, those infected with the heteroresistant isolates failed the therapy and died (62).
Studies of heteroresistance suggest that “stochastic expression of any factor that
facilitates or opposes the action of an antibiotic could influence the fate of single cells”
(63). For example, microfluidic cultures of Mycobacterium smegmatis were shown to
maintain a stable number of living cells in in the presence of isoniazid, a drug that is
activated by the catalase-peroxidase KatG. The apparent stability was a result of
balanced division and death due to stochastic expression of KatG in different cells (63).
Furthermore, phenotypically resistant isolates of Salmonella enterica are able to survive
lethal concentrations of nalidixic acid due to heterogeneous efflux pump activity and
survive kanamycin treatment due to the heterogeneity in expression of the porin
OmpC, which is required for permeation of the drug through the outer membrane (64).
Phenotypic resistance against antibiotics with low membrane permeability can be
caused by biochemical memory effects that establish bistable bacterial growth rates
(65). In summary, heteroresistance is another type of noninherited heterogeneity that
can potentially save bacterial populations from eradication (8, 57).

STRESS-TRIGGERED AND SPONTANEOUS PERSISTENCE

Conditions that cause inhibition of growth induce tolerance of the bulk of the
bacterial population to several groups of antibiotics (e.g., �-lactams [14]) and, in some
cases, are also associated with an increase in persister frequency. Common persistence-
associated factors are intracellular infection (reviewed in reference 3) and starvation.
Importantly, bacteria present in overnight seed cultures are starved before they are
transferred into fresh, nutrient-rich medium. In fresh medium, these cells need time to
adapt, and therefore start growing with a delay, termed the lag phase. As previously
discussed, individual cells exhibit different lag times, and some live cells may have lost
the ability to regrow irreversibly. The longer a seed culture is kept under nutrient
limitation (in the stationary phase), the higher the incidence of persister cells in the test
culture (54). When a growing culture is approaching the stationary phase and becomes
nutrient limited, the number of persisters increases rapidly again (27). It is therefore
essential to standardize the growth phase, growth rate, and seed culture parameters
when studying persistence (39, 54, 66, 67).

Besides starvation, the bactericidal efficacy of antibiotics can be diminished by other
growth-inhibiting stresses, e.g., nutritional/diauxic shift (68–72), bacteriostatic antibiot-
ics (43, 73–77), and low cytoplasmic Mg2� concentration (43). Low concentrations of
bactericidal antibiotics, in particular, fluoroquinolones and aminoglycosides, also trig-
ger persistence (78–82). Some studies report an effect of the pH (21, 83, 84) and
osmotic shock (85, 86) on bacterial survival after antibiotic exposure, but these effects
may vary among the bacterial species and conditions tested (43, 47). However, many of
these studies do not distinguish antibiotic tolerance caused by arrested growth of the
whole population from persistence that is caused by the absence of growth in a
subpopulation. Making such a distinction would require time-kill curves that display the
slope corresponding to the dying bulk and the plateau of persisters instead of the
endpoint measurements of survival.

Persisters form spontaneously during steady-state exponential growth through a
switch of dividing cells into a growth-arrested state; however, spontaneous persisters
seem to be less common than triggered persisters (1). Repeated cycles of dilution and
growth result in a drastic decrease of the persister fraction in E. coli, indicating that few
persisters are generated during logarithmic growth (27). Still, some cells that stopped
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proliferation and became persisters were directly observed when a microfluidic device
was seeded with exponentially growing E. coli (20, 39). In M. smegmatis, repeated
passaging does not eliminate persisters, suggesting that the frequency of spontaneous
persisters may vary among bacterial species, and they might form a majority of
persisters in this organism (87). In conclusion, we can say that multiple environmental
triggers induce temporary growth arrest in a fraction of bacteria, and a fraction of these
nongrowing microbes, in turn, become persisters. In addition, persisters may form
spontaneously.

DORMANCY AND PHYSIOLOGICAL ACTIVITY OF PERSISTERS

It is generally accepted that persisters survive bactericidal treatments due to dor-
mancy (2). However, defining “dormancy” is not trivial. This term is commonly used to
refer to the nongrowing or slow-growing state but also implies a lack of or slow
metabolic activity. However, multiple studies indicate that persisters maintain a level of
macromolecule synthesis and retain limited metabolic activity. These processes include
active protein synthesis, sugar metabolism, and DNA winding by topoisomerases (26,
88, 89). Furthermore, persisters also require ATP-dependent protein disaggregation
when exiting the persister state (45). Importantly, these processes can be considered
potential targets in combatting persistent infections.

In certain media, aminoglycosides (AG; Table 1) kill 100% of P. aeruginosa and E. coli
cells, including persister cells that survive treatments by other bactericidal antibiotics
(23, 89, 90). Eradication of persisters by AG in glucose-containing media shows that E.
coli persisters take up and metabolize glucose, which in turn, creates a membrane
potential of sufficient magnitude to enable the transport of positively charged AG into
bacterial cells. In media containing alternate carbon sources, e.g., arabinose, persisters
survive AG treatment, demonstrating that these carbon sources are either not metab-
olized or do not permeate persister cells (89). As AG directly target the translation
machinery, killing by AG can be seen as an indication of active protein synthesis in
persister cells. Alternatively, protein synthesis might still be completely inhibited in the
persister state, and the bacteria may die after the treatment when resuming growth,
because of the AG that was taken up earlier during the treatment and is not pumped
out fast enough during recovery. Notably, AG effectively kill only persisters in growing
cultures; their bactericidal activity against starving (e.g., stationary-phase) cells and
biofilms is weak (90).

Killing of nonreplicating bacteria by fluoroquinolones (FQ; Table 1) demonstrates
that topoisomerases are active and vulnerable in these cells. Some FQ (e.g., ofloxacin
and gatifloxacin) kill a large fraction of nongrowing stationary-phase bacteria, while
others (e.g., norfloxacin) kill only growing bacteria. Certain FQ (tosufloxacin, clinafloxa-
cin, and sparfloxacin) can eradicate persisters that survive ofloxacin treatment (91, 92).
The causes of the different killing efficiencies are unknown. A study of ofloxacin-treated
stationary-phase E. coli revealed that surviving cells (stationary-phase persisters) suf-
fered antibiotic-induced damage, and their DNA repair machinery (SOS response) was
activated upon regrowth (26, 88). When the FQ treatment was followed by nutrient
deprivation, nearly 100% of the bacteria survived, showing that the timing of SOS
response and resuscitation is critical for the recovery of persisters (88). As a part of the
SOS response, FQ induce filamentation of the rod-shaped bacteria. While the dying cells
filament during the treatment, the FQ-treated persisters retained the normal shape
until the end of the treatment and formed long polynucleoid filaments upon resusci-
tation, which indicates the DNA damage suffered in persister stage (20).

Active protein disaggregation has a role in resuscitation of dormant bacteria.
Endogenous aggregates of misfolded proteins form in many nonreplicating bacteria
during the stationary phase (93). Upon regrowth, these protein aggregates are cleared
with the assistance of ATP-dependent DnaK-ClpB chaperones (45, 86).

Finally, active drug efflux has been stated to contribute to persister survival. A
decreased intracellular concentration of antibiotic and enhanced drug efflux in E. coli
persisters has been reported (46) but has yet to undergo independent substantiation.
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If this observation were to stand scrutiny, the nonreproductive state and efflux together
would define persisters; otherwise, the increased drug efflux would enable proliferation
and cause resistance.

It must be noted that several studies demonstrate in vivo persisters to be metabol-
ically active in infection models. Measurements of the single-cell dynamics of Myco-
bacterium tuberculosis replication and expression of rRNA revealed heterogeneity,
which was amplified by nutrient limitation, intracellular replication, and growth in
mouse lungs. The lungs of chronically infected mice were shown to harbor a subpop-
ulation of nongrowing but metabolically active bacteria, which became prominent in
mice treated with the antituberculotic drug isoniazid, suggesting a role in postthera-
peutic relapses (94). The intracellular persisters of Salmonella were proven to be
nongrowing but maintain a metabolically active state and reprogram the macrophages
by means of secreted effectors that inhibit proinflammatory innate immune responses
and induce anti-inflammatory macrophage polarization (95). The intracellular Staphy-
lococcus aureus persisters within infected macrophages were shown to be in a nondi-
viding state when followed at the single-cell level. At the same time, they remained
metabolically active and displayed reduced but active translation demonstrated by
inducible green fluorescent protein (GFP) production (96).

THE SEARCH FOR MECHANISMS OF PERSISTENCE LEADS TO hip MUTANTS

Once the growth-arrested nature of the persister state was demonstrated, investi-
gations into the underlying mechanisms that render these rare cells nonmultiplying
were invigorated. Genes required for complex phenotypes, e.g., sporulation, are usually
discovered through selection of the loss-of-function mutants (97), but no mutants
incapable of persister formation had been identified by screening of bacterial knockout
strain libraries (98–100). Thus, researchers tried to uncover persistence mechanisms by
studying mutants that show heightened persistence. Almost 40 years after Bigger’s
discovery, Harris Moyed and Kevin Bertrand isolated the first hip mutants (the afore-
mentioned high-persistence mutants) of E. coli K-12 (101). Their aim was to find
mutants with no increase in MIC (see the glossary in the Appendix) that would survive
antibiotic treatment better than the wild type and would not be growth impaired. An
increased MIC would indicate heritable resistance, and growth impairment would
predictably increase antibiotic tolerance of the bulk. Using chemical mutagenesis and
several passages with ampicillin (�-lactam; Table 1), followed by regrowth on drug-free
agar plates, they selected for a mutated variant of the previously uncharacterized hipA
gene that increased the persister fraction 103- to 104-fold. The use of solid media in this
study allowed for counting of the live bacteria (Fig. 1). The resultant killing curves had
a biphasic shape; the initial rapid killing of the sensitive bacteria was followed by a slow
decline in CFU numbers (the “plateau” of persisters). While the hip mutant and
wild-type strains exhibited equal killing rates of the sensitive population, the plateau of
the hip mutant was about a thousandfold higher (Fig. 2).

The ampicillin-selected hip mutants also presented increased persistence to DNA-
targeting treatments (e.g., quinolone antibiotics; Table 1) (102). Similarly, the
quinolone-selected hip mutants had elevated persistence against �-lactams (55). This
led to the conclusion that persisters are multidrug tolerant. In contrast to these first
observations, numerous subsequent studies demonstrated that persister levels depend
considerably on the class of the antibiotic used and that different bacterial subpopu-
lations can be tolerant to different drugs, suggesting that persisters are not physiolog-
ically homogenous (68, 81, 103).

THE hip ALLELE IS A MUTANT TOXIN-ANTITOXIN SYSTEM

The hip mutant hipA7 was much studied in a hope to uncover a universal persis-
tence mechanism. The hip locus was shown to consist of two protein-encoding
genes—hipA and hipB—which form a bicistronic operon. Moyed and colleagues found
that the HipA protein is toxic to the hipB-deficient strains and forms a tight complex
with the HipB protein (104, 105). In fact, they described the first toxin-antitoxin (TA)
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system (reviewed in the following section) on a bacterial chromosome, although they
did not use this term at the time. Later, the growth-inhibiting HipA protein was
demonstrated to be a serine/threonine kinase that phosphorylates the glutamyl-tRNA-
synthetase GltX. This leads to inhibition of tRNA aminoacylation and protein synthesis
(106, 107). Resolved structures of higher-order HipA-HipB-promoter assembly revealed
that HipA-HipA dimerization blocks the active sites of the protein in DNA-bound
complexes and is the mechanism of inhibition of its toxicity (108). The high-persistence
allele hipA7 (101) encodes a mutant form of HipA that phosphorylates the same target
(109). The mutated amino acids weaken HipA dimerization on DNA and thereby
unleash it to facilitate persistence (108). As for several other persistence phenotypes,
the effect of hipA7 is dependent on the age of the inoculum; when the starter culture
has spent 18 h or more in the stationary phase, the mutant and wild-type strains display
equal persistence (54). Mutations identical to the in vitro-selected hipA7 and an
additional high-persistence allele of hipA have been identified in E. coli urinary tract
infection (UTI)-related and commensal strains. Deletion of the hipA7 allele in a UTI
isolate caused a decline in bacterial survival after antibiotic treatment both in bacterial
cultures growing in broth and in infected culture of human bladder cells (108).
Although these data suggest that hipA mutations could play a role in treatment
difficulties of UTIs, to our knowledge, there are currently no studies looking for a
correlation between the hipA mutations and UTI treatment outcome.

Eventually, the studies of the hip mutant did not identify genes or pathways that are
essential for persister formation. Deletion of hipBA did not affect persister frequency in
either growing or stationary-phase cultures (5, 54). The initially reported decrease of
persistence of stationary-phase cultures and biofilms of a ΔhipBA strain (5) was due to
extension of the deletion into the nearby dif (chromosome partitioning) region (100). As
far as we know, there is currently no example of a hip-like mechanism—increase in
persister fraction but no increase in the antibiotic tolerance of bulk—that is proven to
be responsible for recalcitrance of a persistent infection. Cumulative evidence suggests
that unrelated mutations in any bacterial gene, which result in slow growth or delay in
poststress resuscitation, decrease bactericidal efficacy of antibiotics. These mutants are
consequently under positive selection when survival of lethal stress outweighs fast
growth (13).

THE ROLE OF TOXIN-ANTITOXIN MODULES IN PERSISTENCE

After mapping the first hip mutations to the hipBA locus, TA systems became favored
candidates for mechanistic persistence effectors. TA systems consist of toxins that stop
growth by targeting vital bacterial functions and are coexpressed with antitoxins that
preclude their activity (110). In type II TA systems, which resemble HipBA, antitoxins are
proteins that bind to and inhibit cognate toxins and simultaneously control transcrip-
tion of the TA operon.

Previously, TA systems were characterized as plasmid stabilization systems (111), but
the functions of the many newly discovered chromosomal TA systems were puzzling,
and their deletions had no known phenotype (112). One hypothesis suggested that
toxins of TA system are active only in persister cells and are directly responsible for their
transitory growth arrest. Theoretically, the self-regulated TA systems look like ideal
candidates for persistence switches. The TA mRNA induction in nonreplicating bacterial
subpopulations that were isolated through induced lysis of sensitive bacteria (5, 113) or
cell sorting (114) was interpreted as a potential indicator of the toxin activation in
persister cells (5), while recent findings show that an increase of TA transcript levels
does not necessarily indicate liberation of the toxin (115).

While individual deletions of TA operons had no effect on persistence, the multiple
deletion of 10 type II TA systems in E. coli was reported to reduce it significantly,
although it did not eliminate persisters completely (116). Further, TA-dependent per-
sistence was attributed to a stochastic increase of (p)ppGpp concentration in a few
cells, which was, in turn, proposed to induce the proteolysis of antitoxins (117). This
model was accepted as a major mechanism of persistence (118, 119) and stimulated
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more research on TA systems. TA-mediated persistence was reported in different
bacterial species, although some researchers did not see the anticipated effects (Fig. 3)
(120–136). Some studies even found that certain TA systems enhance the lethal effect
of antibiotics in Streptococcus pneumoniae and Bacillus subtilis (125, 126). Bacteria that
were growth-arrested by artificially overproduced toxins were often used as “model
persisters” to circumvent the challenging work on a tiny subpopulation. That was done
despite the demonstration that overexpression of other, unrelated, proteins may
induce growth arrest and antibiotic tolerance as well (127).

Ultimately, the model of TA-mediated persistence in E. coli did not stand up to
scrutiny (39, 66). The effects were not reproducible in more carefully constructed
multiple-deletion strains and were explained by bacteriophage infection, activation of
prophages, and technical irregularities in the experiments (66). The apparent induction
of TA modules and (p)ppGpp in persister cells was a result of using inadequate
fluorescent reporters (39). The studies of effects of TA systems on persistence and
antibiotic tolerance of Salmonella, an organism that is very similar to E. coli, have given
diverse results. A study reported a decrease of macrophage-induced nonreplicating
bacteria and persisters in 12 different single TA deletion mutants (21), while an
independent study that was performed in a test tube did not detect effects of these
individual TA deletions but found a severalfold reduction in survival of the Δ12TA
multiple deletion mutant (43). One of the toxins of Salmonella, TacT, works by acety-
lating aminoacyl tRNAs, whereas hydrolysis of corrupted tRNA by peptidyl-tRNA hy-
drolase Pth was reported to resuscitate persisters (137). Another study that suggests a
role of TA specifically upon macrophage infection was carried out in Burkholderia
pseudomallei. No effect for single TA deletions was detected in test tube-grown
bacterial cultures, but decreased survival of the antibiotic treatment occurred in
macrophages (124). While the reasons for the different experimental outcomes are

FIG 3 Testing the role of TA in persistence. Experimental studies that have suggested (5, 101, 114, 131) or reported the positive
effect of TA on persistence are marked by upward bars (orange) in the order of their publication. Downward bars (blue) mark
studies that did not see an effect of TA on persister formation and/or critically reassessed the published evidence or
interpretation. The length of the bar corresponds to the number of citations (in log scale) of each publication on Google
Scholar as of November 2019.
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often unclear, such discrepancies should encourage researchers to perform comple-
mentation tests of TA gene knockouts and reassess the effects of the type II TA system
on persistence. The inconsistent results of persister assays are often caused by variation
of the experimental conditions, and precise trial protocols have helped to overcome
these issues (51, 52, 66, 67, 138).

Another class of TA system, type I, has also been linked to persistence. Toxins of
these TA systems are, typically, small proteins which target cell membranes, causing
membrane depolarization and ATP depletion. Translation of these toxins is suppressed
by antisense sRNA antitoxins (139). An example of a type I TA system that promotes
persistence is the TisB/IstR-1 system of E. coli. This TA system is integrated into the SOS
regulon, is induced by fluoroquinolone antibiotics (FQ; Table 1), and enhances persis-
tence to FQ (78, 79, 140). The promoter of the tisB toxin gene is repressed by LexA, the
master regulator of the SOS response and is induced upon DNA damage (79). This leads
to the formation of two subpopulations of bacteria, polarized and depolarized cells
(140). Deletion of tisB decreases persistence to FQ (79), while deletion of the regulatory
RNA sequences produces a highly persistent (hip) strain (140). In response to overpro-
duction of the GTPase Obg in E. coli, a TisB-like toxin, HokB (of the hokB-sokB type I TA
system), was shown to form pores and enhance survival of antibiotic treatment (141),
while the reverse process, HokB monomerization and membrane repolarization, leads
to reversal of this phenotype (142). The relevance of TisB/IstR-1-like systems to persis-
tence of bacterial pathogens during infection is unknown.

(p)ppGpp SIGNALING AND PERSISTENCE

The signal nucleotide (p)ppGpp has been proposed to function as a master regu-
lator of persister formation (119, 143). (p)ppGpp reprograms bacterial physiology in
response to nutrient limitation and is overproduced in the stationary phase (144). It
binds to and controls multiple cellular targets (145–147). Increased (p)ppGpp levels
promote catabolic reactions (148) and repress growth (149, 150) by inhibiting protein
synthesis and ribosome assembly (151), as well as transcription of rRNA and ribosomal
proteins (152). Transcriptional inhibition occurs directly, by binding of (p)ppGpp to RNA
polymerase (153, 154), and indirectly, by depleting the GTP pool (144). In the stationary
phase, increased (p)ppGpp levels induce formation of inactive 100S ribosome dimers
(155, 156). (p)ppGpp-mediated signaling is also important in the formation of
antibiotic-tolerant biofilms in E. coli (157), Enterococcus (158), and Vibrio cholerae (159).

A key question is how to separate the direct effects of (p)ppGpp from the inevitable
effects of stresses that induce production of this regulator. The connection between
antibiotic tolerance and (p)ppGpp signaling emerged with the discovery of rel (relaxed)
mutants (160). The property of penicillin to kill only actively dividing bacteria (49) was
used in E. coli genetics for isolating auxotrophic mutants (161, 162) and rel regulatory
mutants (160). These experiments identified the relA gene that codes for an enzyme
synthesizing guanosine(penta)tetraphosphate [(p)ppGpp] (147).

The intracellular levels of (p)ppGpp are controlled by RelA/SpoT homolog (RSH)
enzymes (163). Experiments in (p)ppGpp null mutants have shown that persisters can
also form in the absence of the regulatory nucleotide (70, 143), but given how central
(p)ppGpp is for control of bacterial metabolism, its effects are extremely pleiotropic
(164, 165). While the knockouts commonly cause a significant decrease in the levels of
persistence (68, 70, 143, 166), in some organisms (and under certain conditions)
deletion of the RSH genes had no effect (43, 44) or even enhanced antibiotic tolerance
(167). (p)ppGpp deficiency thoroughly disturbs bacterial physiology, particularly upon
stress and in biofilms. A complete absence of (p)ppGpp causes multiple amino acid
requirements, poor survival of aged cultures, and aberrant cell morphology and mo-
tility, as well as defects of membrane permeability and a delay in growth rate reduction
response upon entry into starvation (43, 150, 168). In P. aeruginosa, a lack of (p)ppGpp
severely reduced persistence of stationary-phase cultures and biofilms but caused
spontaneous cell death and autolysis of starving cells under the same conditions (143).
In E. coli, disruption of the relA gene delays regrowth when bacteria are provided with
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fresh nutrients after starvation and, therefore, causes a transient increase in tolerance to
�-lactams in a medium-specific manner (167), the same phenomenon was used to
isolate the early rel mutants (160). The reports implicating (p)ppGpp-mediated signal-
ing in stochastic persister formation via activation of TA systems (117, 122) in E. coli
were later reassessed (67, 118) and eventually retracted. However, this does not reject
the possibility of (p)ppGpp- and TA-mediated persistence or antibiotic tolerance as
such. As we mentioned above, the HipA toxin phosphorylates the glutamyl-tRNA-
synthetase GltX that leads to a shortage of aminoacylated tRNA and activates (p)ppGpp
synthesis by RelA (stringent response) (106, 107). The (p)ppGpp induction and relA are
required to enhance the growth arrest and antibiotic tolerance by ectopically expressed
hipA (106, 169). A new group of TA systems that are composed of bona fide (p)ppGpp-
synthesizing RSH toxins, which are paired with neutralizing antitoxin proteins, was
described recently (170), adding another layer of complexity to the puzzle of signal
nucleotides and TA. In conclusion, RSH gene disruption is too “heavy-handed” an
approach for establishing the specific role of (p)ppGpp in persistence, and these studies
were not able to conclusively evaluate the involvement of (p)ppGpp in persister cell
formation.

A more direct way to assess the role of (p)ppGpp in persister formation is to measure
(p)ppGpp concentration at the single-cell level and to correlate these observations with
the cell’s commitment to persistence. This requires time-resolved quantification, since
the (p)ppGpp concentration is capable of reaching maximum levels (and dropping back
to the baseline levels) in a matter of minutes (167). Unfortunately, an adequate
experimental tool for this is lacking. While the RpoS-mCherry translational fusion has
been repeatedly used as a proxy for intracellular (p)ppGpp concentration (117, 122,
166), there is no strict proof that this fusion construct exclusively reports ppGpp levels.
Time resolution of the fusion protein is limited by slow mCherry maturation (20 to 40
min in E. coli [171]) and its accumulation in stable aggregates (39, 166). Its fluorescence
must be constantly tracked to locate de novo fluorescent cells; otherwise, it mostly
marks the bacteria that retained the nondividing state since prior to the stationary
phase (39). A recently discovered RNA riboswitch that specifically binds (p)ppGpp (172)
could serve as a foundation for designing time-resolved (p)ppGpp reporters.

While in vitro investigation of (p)ppGpp’s role in persistence is convoluted, the
clinical evidence of selective pressure acting on the RSH genes and promoting antibi-
otic tolerance is well documented. Truncated versions of the Rel RSH enzyme, which
constitutively produce (p)ppGpp, were shown to be responsible for antibiotic tolerance
of S. aureus (173) and Enterococcus faecium (174) clinical isolates. A mutation in rel,
resulting in reduced (p)ppGpp hydrolase activity, was identified in a �-lactam-tolerant
S. aureus clinical strain (174). However, in all of these cases, increased (p)ppGpp levels
induced the antibiotic tolerance of bulk population, and therefore, none of these
mutants can be considered true hip mutants.

PERSISTENCE WITHOUT A DEDICATED MECHANISM?

Screening of knockout (98–100, 175) and expression (176) libraries did not identify
specialized persistence pathways but showed that several genes and pathways differ-
ing in primary function affect persister level. Stochastic fluctuation in gene expression
may produce bi-stable phenotypes and subpopulations that show different levels of
antibiotic tolerance. For example, individual cells of S. aureus expressing lower levels of
the tricarboxylic acid (TCA) cycle enzymes exhibited higher antibiotic tolerance (177).
The newly selected hip mutations of E. coli mapped to genes of several metabolic
enzymes, stress response proteins, and antitoxins, showing that persistence can be
attributed to different mechanisms (34, 178). While no special persistence mechanisms
have been identified, Bruce Levin and colleagues have formulated the persistence as
stuff happens (PaSH) hypothesis. They postulate that persistence is an inadvertent
product of different errors in cell division. The genes that contribute to it modulate the
rate at which these errors occur and/or are corrected (42). The theory resembles the
ideas of Thomas Nyström, who attributed bacterial growth arrest to senescence and
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protein damage (179). However, the PaSH model does not answer every question. It
does not explain mechanistically the apparent coordination between different cellular
processes during persister formation and regrowth. Furthermore, it does not specify
how errors in cell division (and repair) are communicated to the translational and
metabolic machinery in a way that ultimately causes either antibiotic tolerance or leads
to resuscitation of the bacterial cell.

DRUGS AND STRATEGIES AGAINST PERSISTERS

Numerous studies have been conducted to isolate antipersister agents against in
vitro-formed persisters in a hope to make extrapolations about their clinical benefit
(180, 181). The devised compounds aim to either (i) directly kill dormant persister cells
or (ii) resensitize/resuscitate them to antibiotic-susceptible states. While antibiotics
usually target growth-related synthetic processes (Table 1), several antipersister agents
target essential components of the cell in a growth-independent fashion (Fig. 4). The
antipersister and cytotoxic concentrations of the thus identified compounds are close,
which severely limits their therapeutic potential, in the best case to topical applications
(181). Despite that, several of them are enrolled in clinical trials (180). The anti-tumor
DNA cross-linking agents mitomycin C and cisplatin have demonstrated activity against
nongrowing cultures, biofilms (5), and persisters (182, 183). Antipersister activity against
Gram-positive microbes and/or mycobacteria was demonstrated for different mem-
brane-active agents— quinolone-like compounds (184), synthetic retinoids (also in vivo)
(185), and others (186, 187). While Gram-positive bacterial membranes contain a
substantial fraction of anionic lipids, mammalian membranes consist of zwitterionic
neutral lipids and have high levels of cholesterol, which enables a degree of selectivity
for the membrane-disrupting antimicrobial agents (188, 189). The Eleftherios Mylonakis
lab screened for the membrane-targeting antimicrobials that rescued infected Caeno-

FIG 4 Antipersister compounds. Several newly discovered compounds and conventional antibiotics of
different classes have antipersister activity. They kill a large fraction of persisters of both Gram-negative
and Gram-positive species which have survived bactericidal treatment with common bactericidal anti-
biotics (e.g., ampicillin or ofloxacin). Some antipersister compounds are active as adjuvants in combina-
tion with known bactericidal antibiotics.
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rhabditis elegans, thus identifying the compounds that did not kill the nematodes and
had a lower toxicity (185, 186).

Antipersister compounds that potentiate conventional antibiotics may stimulate
metabolic activity of in vitro persisters, reverting them to an antimicrobial-susceptible
state, as does the fatty acid signaling molecule cis-2-decenoic acid (190), or facilitate the
uptake of antibiotic into persister cells such as triclosan (a disinfectant) and silver in the
case of aminoglycosides (128, 191). C10, a small molecule that potentiates killing of
Gram-negative pathogens by the FQ norfloxacin (192), inhibits M. tuberculosis respira-
tion, blocks its tolerance to isoniazid (INH), and restores INH sensitivity in otherwise
INH-resistant M. tuberculosis strains in vitro (193). Hopefully, at least some of these listed
compounds or combinations show activity against bona fide persisters of medically
relevant organisms within the infected host, proving their clinical relevance.

As we have mentioned, under particular conditions, some already licensed antibi-
otics can kill a large fraction of the nongrowing bacteria or totally eradicate them in
vitro. The activity of conventional antibiotics and their combinations against the in
vitro-generated persisters that survive ampicillin or ofloxacin treatment has been
demonstrated in several studies. Certain fluoroquinolones (FQ), foremost tosufloxacin,
are highly active against the persisters of uropathogenic E. coli (UPEC) (92) and S. aureus
(91). Alas, these FQ have been withdrawn or their clinical development was stopped
due to toxicity (194). E. coli persisters were killed by a combination of aminoglycosides
and colistin, and S. aureus persisters were killed by aminoglycosides plus daptomycin
(81). A recent study found that sequential treatment of E. coli by a combination of an
antibiotic that is strongly dependent on metabolism (ampicillin or ciprofloxacin) and a
second antibiotic that is weakly dependent on metabolism but normally not used
because of toxicity (mitomycin C and colistin) can sterilize the culture, killing both
metabolically active and persister cells, while simultaneously dose-sparing (195). Some
new or repurposed antimicrobials were shown to kill nongrowing bacteria, including in
vitro persisters. Halicin, originally developed as an antidiabetes agent and recently
identified as a candidate broad-spectrum antibiotic that dissipates the ΔpH component
of the proton motive force, is bactericidal against a wide spectrum of pathogens and
eradicates E. coli persisters (196). Researchers from the Kim Lewis lab found that the
ribosomally encoded cyclic peptide lassomycin kills M. tuberculosis, including the
dormant mycobacteria, by targeting the ATP-dependent protease ClpC1P1P2 (197),
while the antimicrobial peptide ADEP4 (acyldepsipeptide), which reprograms the ClpP
protease to nonselectively degrade cellular proteins in a ATP-independent manner
(198, 199), can kill methicillin-resistant S. aureus (MRSA) persisters and, in combination
with rifampin, eradicates them completely (200). Most importantly, ADEP4 with rifam-
pin eradicated staphylococcal infection in a deep-seated mouse thigh infection model,
promising a path toward developing therapies (200).

An example of a new antibiotic that was demonstrated to be active against M.
tuberculosis persisters is bedaquiline, which is used in combination regimens against
multidrug-resistant tuberculosis (201). When combined with other antituberculosis
medications, it killed persisters both in vitro (202) and in vivo (203). In ongoing clinical
trials, it has led to high rates and shorter times of conversion to negative sputum
culture (204, 205). Bedaquiline is a diarylquinoline compound with a novel mechanism
of action that targets the ATP synthase (206). It has both bactericidal and sterilizing
activities demonstrated in a mouse tuberculosis (TB) model (207, 208). Killing of M.
tuberculosis persisters with no relapse was demonstrated for a bedaquiline-containing
regimen compared to the conventional anti-TB multidrug regimen in a mouse model
(203). It killed those M. tuberculosis in vivo persisters, which could not be detected by
a regular culture (209), but resuscitated and formed colonies when stimulated by M.
tuberculosis culture supernatant (210), which contains secreted proteins known as
resuscitation-promoting factors (211). Another new anti-TB drug, delamanid, which
blocks the production of mycolic acids, thus destabilizing the cell wall (212), killed
nonreplicating M. tuberculosis in vitro and in a guinea pig model of TB (213). These
results give hope for a faster cure with reduced relapse rate.
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CONCLUSIONS AND PERSPECTIVES

In 2001, Kim Lewis proposed the role of persisters in the antibiotic tolerance of
biofilms, prompting research into this neglected topic (214). Studies of persister cells
have provided much knowledge regarding the heterogeneity of bacterial growth in
vitro but much less information about such heterogeneity upon persistent infections.
The complexity of infection cannot be fully reproduced in a test tube, and we do not
know whether those persisters we observe in vitro resemble physiologically the bacteria
that cause treatment failures during persistent infections.

How has the study of antibiotic persisters contributed to elucidating the complexity
of persistent infection? During infection, bacteria encounter several stresses that may
induce the persister state, e.g., phagocytosis (21), and location in acidic compartments
(83). Antibiotic treatment can modulate these responses, for example, by inducing
formation of a nonreplicating bacterial subpopulation that is tolerant to both antibi-
otics and the host complement system (215). Several studies have shown how bacteria
can persist during antibiotic treatment in infection models, not due to the persister cells
but due to transient phenotypic resistance (22, 216–218). For example, the major
contributors to the progression of Salmonella infection in an animal model were not
growth-arrested but were slowly growing and moderately antibiotic-tolerant cells (22).
According to accepted models, M. tuberculosis infections persist during antibiotic
treatment because of nonreplicating mycobacteria (219), while a study of Mycobacte-
rium marinum-infected zebrafish larvae and M. tuberculosis-infected cultured macro-
phages demonstrated survival of actively replicating subpopulations. These mycobac-
teria expressed macrophage-induced drug efflux pumps at a high level and maintained
transient phenotypic resistance for at least 120 h after macrophage lysis (216). Another
phenotypic switch that allows bacteria to avoid antibacterial action is the formation of
cell wall-deficient L-forms under isotonic conditions. L-forms are resistant to cell
wall-targeting antibiotics and switch back to the walled state following antibiotic
withdrawal (217). L-forms have been observed in macrophages, animal models, and
recently, urine of patients with recurrent urinary tract E. coli infections (rUTI) (218). In
conclusion, the study of persisters has certainly helped develop bacterial cell biology
methods that allow the investigation of complex bacterial heterogeneity that could
reflect the complexities of persistent infection. Interest in antibiotic persisters has
highlighted transient mechanisms that enable bacteria to evade antibiotic action and
facilitate emergence of heritable antibiotic resistance.

Despite many attempts, the study of antibiotic persisters in vitro has not identified
any specific mechanisms of antibiotic tolerance that could become new targets of
antimicrobial therapy (Fig. 5). Is this a failure? The study of clinical isolates suggests that
it might, to the contrary, reflect the challenging reality of chronic and recurrent
infections. A unique source for understanding persistent infections are the longitudinal
isolates of P. aeruginosa collected from tens of cystic fibrosis (CF) patients over many
years. Characterization of the genomes and phenotypes of these isolates did not reveal
a single major mechanism that might be responsible for persistence. Instead, varied
mutations led to diversification and adaptation of the colonizing pathogen (220, 221).
These data, together with metagenome, transcriptome, and proteome data (222–224),
suggest that we should study the antibiotic susceptibility of persistent pathogens (e.g.,
biofilms, bacterial aggregates, intracellular bacteria—in different host cell compart-
ments etc.) under conditions that simulate the key aspects of the host environment. In
a recent review, leading experts in the field of antimicrobial resistance, advise testing
of antibiotic susceptibility of important pathogens under various conditions that reflect
the relevant body niche. That should include conditions of slow growth, nonreplication,
and the lag periods following nonreplication and preceding resumption of growth
(225).

The route that has been successful for the development of nonantimicrobial drugs
starts from pinpointing drug targets and continues with high-throughput screening of
chemical libraries to find their specific inhibitors. Such approaches have provided zero
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new antibiotics despite identifying highly potent inhibitors of essential bacterial pro-
teins. The promising leads were not effective antibacterial agents, mostly because of
permeability issues and fast development of resistance (226). Thus, the outlook of
target-based drug discovery against persisters and persistent infections is poor (227).
Because bacteria have coexisted with other bacteria and fungi in nature for billions of
years, current thinking suggests that nature has already identified the best targets and
selected for the best lead antibacterial structures. Most major classes of antibiotics
originate from environmental microbes and were discovered at the beginning of the
antibiotic era without any knowledge of their targets or mechanisms of action. Searches
for natural products and synthetic compounds that target and kill specifically the
growth-arrested/nongrowing bacteria, either alone or in combination with known
antimicrobials, could identify entirely unknown classes of antimicrobial substances.

APPENDIX
GLOSSARY

● antibiotic resistance The ability of bacteria to grow (proliferate) in the pres-

FIG 5 Growth arrest is essential for antibiotic tolerance. The molecular mechanisms of heritable antibiotic resistance are
well characterized. Despite efforts, no specific molecular pathways responsible for persister formation or antibiotic
tolerance of the bulk of a bacterial population have been identified. Different stresses and mutations that inhibit growth
increase antibiotic tolerance and persistence. Mediators of stress response [TA systems and (p)ppGpp] inhibit the targets
of antibiotics and may enhance persistence but are not essential for it.
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ence of increased concentrations of antibiotics. The cause of the current antibiotic
crisis. If not specified as “phenotypic or heteroresistance,” this trait is heritable,
common to all bacteria of a clonal population and relies on specific resistance
genes or mutations.

● antibiotic tolerance The ability of bacteria to survive treatment with bacteri-
cidal antibiotics with no change in the MIC.

● in vitro In this review, in vitro refers to bacterial cultures in a controlled
environment outside an infected animal or patient. Such use of this term is
common in microbiology; in biochemistry and molecular biology, it marks pro-
cedures outside a living cell using purified components.

● in vivo In this review, in vivo refers to bacteria within a patient or animal model.

● MBC Minimum bactericidal concentration; the lowest concentration of an anti-
biotic required to kill �99.9% of the bacteria; a measure of antibiotic tolerance.

● MDK Minimum duration of killing; the shortest period required to kill a certain
fraction (e.g., �99%, �99.9%) of the bacteria by antibiotic; a measure of antibiotic
tolerance.

● MIC Minimum inhibitory concentration; the lowest concentration of an antibi-
otic required to prevent the replication of bacteria. MIC is the most common
measure of antibiotic sensitivity or resistance levels. A heightened MIC value
indicates resistance.

● persistent infections Infections caused by pathogens that remain viable in the
host for a long period; either asymptomatic (subclinical) or symptomatic (3).

● persisters (persister cells) A subpopulation of bacteria that is highly tolerant to
antibiotics and survives a treatment that kills the majority of bacteria of the clonal
population.

● phenotypic resistance A nonheritable form of antibiotic resistance; the tran-
sient ability of otherwise susceptible bacteria to grow in the presence of antibi-
otics. A common form of phenotypic resistance is heteroresistance, in which a
subpopulation of a clonal population shows reduced antibiotic sensitivity, fre-
quently due to unstable genetic changes (8, 228, 229).
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